eMonocot Cyperaceae

an authoritative resource for Cyperaceae data worldwide, integrating global and regional perspectives

Spikelet structure and development in Cyperoideae (Cyperaceae): a monopodial general model based on ontogenetic evidence

Publication Type:Journal Article
Year of Publication:2010
Authors:Vrijdaghs, A., Reynders, M., Larridon, I., Muasya, M., Smets, E., Goetghebeur P.
Journal:Annals of Botany
Volume:105
Pagination:555-571
Keywords:Carex, DNA-sequence data, morphology, Phylogeny
Abstract:

Background and Aims In Cyperoideae, one of the two subfamilies in Cyperaceae, unresolved homology questions about spikelets remained. This was particularly the case in taxa with distichously organized spikelets and in Cariceae, a tribe with complex compound inflorescences comprising male (co)florescences and deciduous female single-flowered lateral spikelets. Using ontogenetic techniques, a wide range of taxa were investigated, including some controversial ones, in order to find morphological arguments to understand the nature of the spikelet in Cyperoideae. This paper presents a review of both new ontogenetic data and current knowledge, discussing a cyperoid, general, monopodial spikelet model. Methods Scanning electron microscopy and light microscopy were used to examine spikelets of 106 species from 33 cyperoid genera. Results Ontogenetic data presented allow a consistent cyperoid spikelet model to be defined. Scanning and light microscopic images in controversial taxa such as Schoenus nigricans, Cariceae and Cypereae are interpreted accordingly. Conclusions Spikelets in all species studied consist of an indeterminate rachilla, and one to many spirally to distichously arranged glumes, each subtending a flower or empty. Lateral spikelets are subtended by a bract and have a spikelet prophyll. In distichously organized spikelets, combined concaulescence of the flowers and epicaulescence (a newly defined metatopic displacement) of the glumes has caused interpretational controversy in the past. In Cariceae, the male (co) florescences are terminal spikelets. Female single-flowered spikelets are positioned proximally on the rachis. To explain both this and the secondary spikelets in some Cypereae, the existence of an ontogenetic switch determining the development of a primordium into flower, or lateral axis is postulated.

Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith