eMonocot Cyperaceae

an authoritative resource for Cyperaceae data worldwide, integrating global and regional perspectives

Soil water status influences plant nitrogen use: a case study

Publication Type:Journal Article
Year of Publication:2007
Authors:Yuan, Z. Y., Li L. H.
Journal:Plant and Soil
Volume:301
Pagination:303-313
Keywords:biomass, forest, leaf life-span, mineral-nutrition, N PRODUCTIVITY, nitrogen use efficiency, NUTRIENT USE EFFICIENCY, plant strategies, RESIDENCE, RESORPTION, riparian areas, soil water, TIME, USE STRATEGIES, wetland vegetation, wild plants
Abstract:

We studied differences in nitrogen use efficiency (NUE) among six species [Calamagrostis epigejos (L.) Roth., Carex duriuscula C.A. Mey., Phragmites communis (L.) Trin., Salix gordejevii Y.L. Chang, Salix cheilophila Schneid., and Typha minima Funk.] growing in two contrasting habitat types, i.e., a riverine wetland with high water supply and a riparian zone with low water supply. The two sites were different in soil water supply, but not in nitrogen supply. Here, NUE was defined as the total net primary production per unit nitrogen absorbed. There was no significant difference in NUE between the species growing in the riverine wetland (Carex duriuscula, P. communis, S. cheilophila, T. minima) and the species growing in the river bank (Carex duriuscula, Calamagrostis epigejos, P. communis, S. gordejevii). We further analyzed NUE as the product of the nitrogen productivity (A, the rate of dry matter production per unit of nitrogen in the plant) and the mean residence time of nitrogen (MRT, the period of time a unit of nitrogen is present in the plant). The species growing in the riverine wetland had larger A but lower MRT than the species growing in the river bank. There was an inverse relationship between A and MRT. Consequently, NUE was similar among species and habitats. These results suggested that environmental factors, such as soil water supply, can influence N use by plants.

Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith