eMonocot Cyperaceae

an authoritative resource for Cyperaceae data worldwide, integrating global and regional perspectives

Competition alters plant species response to nickel and zinc

Publication Type:Journal Article
Year of Publication:2008
Authors:Koelbener, A., Ramseier, D., Suter M.
Journal:Plant and Soil
Keywords:ACCUMULATION, accumulation and tolerance, Carex flava, Centaurea angustifolia, communities, diversity, FACILITATION, growth, heavy, INTERFERENCE, METAL TOXICITY, metals, phytoextraction, phytoremediation, Salix caprea, soil, TRANSGENIC PLANTS

Phytoextraction can be a cost-efficient method for the remediation of contaminated soils. Using species mixtures instead of monocultures might improve this procedure. In a species mixture, an effect of heavy metals on the species' performance can be modified by the presence of a co-occuring species. We hypothesised that (a) a co-occuring species can change the effect of heavy metals on a target species, and (b) heavy metal application may modifiy the competitive behaviour between the plants. We investigated these mechanisms in a greenhouse experiment using three species to serve as a model system (Carex flava, Centaurea angustifolia and Salix caprea). The species were established in pots of monocultures and mixtures, which were exposed to increasing concentrations of Ni and Zn, ranging from 0 to 2,500 mg/kg. Increased heavy metal application reduced the species' relative growth rate (RGR); the RGR reduction being generally correlated with Ni and Zn concentrations in plant tissue. S. caprea was an exception in that it showed considerable Zn uptake but only moderate growth reduction. In two out of six cases, competitors significantly modified the influence of heavy metals on a target species. The interaction can be explained by an increased uptake of Zn by one species (in this case S. caprea) that reduced the negative heavy metal effect on a target species (C. flava). In two further cases, increasing heavy metal application also altered competitive effects between the species. The mechanisms demonstrated in this experiment could be of relevance for the phytoextraction of heavy metals. The total uptake of metals might be maximised in specific mixtures, making phytoextraction more efficient.

Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith